#### M1.(a) Reagent

 $\begin{array}{l} \text{Acidified} \\ \text{K}_2\text{Cr}_2\text{O}_7 \end{array}$ 

Acidified KMnO₄

I<sub>2</sub> / NaOH

Named RCOOH with HCl or H<sub>2</sub>SO<sub>4</sub>

Named RCOCI

# Allow names including potassium permanganate Wrong or no reagent CE = 0

 $\begin{array}{l} \textbf{P} \mbox{ (ketone)} \\ \mbox{no reaction} \\ \mbox{velow ppt} \\ \mbox{no reaction} \\ \mbox{no reaction} \\ \mbox{no reaction} \\ \end{array} \\ \begin{array}{l} Penalise \mbox{ incorrect formulae or incomplete reagent, such as} \\ K_2 C r_2 O_7 \mbox{ or acidified dichromate, but mark on.} \end{array}$ 

1

1

**S** (2<sup>°</sup> alcohol) (orange to) green (purple to) colourless no reaction fruity or sweet smell Misty fumes *Allow no change or nvc but penalise <u>nothing or no</u> <u>observation</u> If 2 reagents added sequentially or 2 different reagents used for P and S then CE = 0* 

(b) Tollens' silver mirror / solid

1

1

| (c) | G<br>P                                  |                                                                                                                               |            |        |
|-----|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------|--------|
|     | •                                       | If not P then no marks for clip                                                                                               |            | 1      |
|     | 5 OR five                               |                                                                                                                               |            | 1      |
|     |                                         |                                                                                                                               |            |        |
| (d) | $C_4H_{12}Si$                           | Must be molecular formula                                                                                                     |            |        |
|     |                                         | Wrong substance $CE = 0$ for clip                                                                                             |            | 1      |
|     | Any <b>two</b> fro                      | om<br><u>or single</u> peak OR all (four) carbon atoms are equivale<br>onment                                                 | ent or one |        |
|     | <ul><li>upfiel</li><li>non to</li></ul> | d from others or far away from others or far to right<br>oxic OR inert                                                        |            | 1      |
|     | • low b                                 | oiling point or volatile or easy removed from sample<br>Ignore and don't credit single peak linked to 12 equiver $\delta = 0$ | alent H    |        |
|     |                                         | but use list principle for wrong statements                                                                                   |            |        |
|     |                                         |                                                                                                                               |            | 1<br>1 |
|     |                                         |                                                                                                                               |            |        |
| (e) | Figure 1 is                             | R<br>If not <b>R</b> cannot score M2                                                                                          |            |        |
|     |                                         |                                                                                                                               | M1         | 1      |
|     | 90-150 (pp                              | m) or value in range is (two peaks for) C = C / alkene                                                                        |            | 1      |
|     |                                         |                                                                                                                               | M2         | 1      |
|     | Figure 2 is                             | T                                                                                                                             |            | 1      |
|     |                                         |                                                                                                                               |            |        |
|     |                                         |                                                                                                                               | M3         | 1      |
|     | 50-90 (ppm                              | ) or value in range is C—O or alcohol or ether                                                                                |            |        |

1

1

M5

(f) U  $H_{3}C - C - C - CH_{3}$  $C_{6}H_{12}O_{6}$   $CH_{3}$  O

Answers include



because V must be an isomer of S

[17]

[1]

M3.(a) (i) Single / one (intense) peak / signal *OR* all H or all C in same environment *OR* 12 equiv H or 4 equiv C

**Do not allow non-toxic or inert (both given in Q)** Any 2 from three Ignore peak at zero

#### OR

Upfield / to the right of (all) other peaks *OR* well away from others *OR* doesn't interfere with other peaks

Ignore cheap Ignore non-polar

## OR

Low bp **OR** volatile **OR** can easily be removed Ignore mention of solubility



1





1

(ii) CH<sub>3</sub>—CH<sub>2</sub>—O or with sticks Ignore any group joined on other side of -O-

Ignore any group joined on other side of –( Ignore missing trailing bond Ignore charges as if MS fragment







1

1



1

1



(ii) Check structure has 6 carbons



1

(iii) Check structure has 6 carbons



 M4.(a)
 (i)
 CDCl<sub>3</sub> or CD<sub>2</sub>Cl<sub>2</sub> or C<sub>6</sub>D<sub>6</sub> or CCl<sub>4</sub>

 Not D<sub>2</sub>O Allow CD<sub>3</sub>Cl

(ii) 4 or four

(iii) Triplet or 3 or three

 (iv) <u>1,4-dichloro-2,2-dimethylbutane</u> Do not penalise different or missing punctuation or extra spaces.
 Spelling must be exact and order of letters and numbers as here.

(b) (i) 3 or three

1

1

1

1

1

[11]

## (ii) 190-220 (cm<sup>-1</sup>)

Allow a single number within the range. **OR** a smaller range entirely within this range.

## (iii) <u>hexane-2,5-dione</u>

Do not penalise different or missing punctuation or extra spaces. Spelling must be exact and order of letters and numbers as here. NB so must have middle e

M5.IR

#### Extended response

Absorption at 3360 cm<sup>-1</sup> shows OH alcohol present Deduction of correct structure without explanation scores maximum of 4 marks as this does not show a clear, coherent line of reasoning.

M1

1

1

1

[7]

#### NMR

There are 4 peaks which indicates 4 different environments of hydrogen Maximum of 6 marks if no structure given OR if coherent logic not displayed in the explanations of how two of OH, CH<sub>3</sub> and CH<sub>2</sub>CH<sub>3</sub> are identified.

M2

**M3** 

1

1

The integration ratio = 1.6: 0.4: 1.2: 2.4

The simplest whole number ratio is 4 : 1 : 3 : 6

| The singlet (integ 1) must be caused by H in OH alcohol                                                                               | M4 | 1 |
|---------------------------------------------------------------------------------------------------------------------------------------|----|---|
| The singlet (integ 3) must be due to a $CH_{\scriptscriptstyle 3}$ group with no adjacent H                                           | M5 | 1 |
| Quartet + triplet suggest CH₂CH₃ group                                                                                                | M6 | 1 |
| Integration 4 and integration 6 indicates two equivalent $CH_2CH_3$ groups                                                            | M7 | 1 |
| СH <sub>2</sub> CH <sub>3</sub><br> <br>H <sub>3</sub> CСОН<br> <br>CH <sub>2</sub> CH <sub>3</sub>                                   | M8 | 1 |
| M1 Ester <b>1</b><br>If Ester 2, can score M3 only.                                                                                   |    | 1 |
| M2 peak at $\delta = 4.1$ due to<br>When marking M2 and M3, check any annotation of<br>structures in the stem at the top of the page. |    | 1 |

[8]

**M6.**(a)

|     | M3 | ( $\delta$ = 4.1 peak is) quartet as <u>adjacent / next to / attached to CH</u> <sub>3</sub>                          | 1 |
|-----|----|-----------------------------------------------------------------------------------------------------------------------|---|
|     | M4 | Other spectrum quartet at $\delta$ = 2.1-2.6 (or value in this range)                                                 | 1 |
| (b) | M1 | <u>Quaternary</u> (alkyl <u>) ammonium salt / bromide</u>                                                             | 1 |
|     | M2 | CH₃Br or bromomethane<br>Penalise contradictory formula and name.                                                     | 1 |
|     | М3 | Excess ( CH₃Br or bromomethane)<br>Mention of acid eg H₂SO₄ OR alkali eg NaOH loses both M2<br>and M3.                | 1 |
|     | M4 | Nucleophilic substitution<br>Can only score M3 if reagent correct.<br>Ignore alcohol or ethanol (conditions) or Temp. | 1 |

# (c)

| Bromine                      | Acidified KMnO₄                        |
|------------------------------|----------------------------------------|
| (penalise Br but<br>mark on) | (Penalise missing acid<br>but mark on) |

Wrong reagent = no marks.

*If bromine colour stated it must be red, yellow, orange, brown or any combination, penalise wrong starting colour.* 

1

| Benzene | no reaction / c | no reaction / colour   |
|---------|-----------------|------------------------|
|         | olour remains   | remains / no (visible) |

| / no (visible)<br>change | change |
|--------------------------|--------|
|                          |        |

Ignore 'clear', 'nothing'. Allow colour fades slowly. Allow 'nvc' for no visible change.

| cyclohexene (Bromine) (Acidified KMnO <sub>4</sub> ) | cyclohexene | (Bromine)    | (Acidified KMnO₄) |
|------------------------------------------------------|-------------|--------------|-------------------|
| decolourised decolourised                            |             | decolourised | decolourised      |

[11]

1

1

M7.C

[1]